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Abstract. The notion of relative periodic orbits for Hamiltonian systems with symmetry is
discussed and a correspondence between periodic orbits of reduced and unreduced Hamiltonian
systems is established. Variational principles with symmetries are studied from the point of view
of symplectic reduction of the space of loops, leading to a characterization of reduced periodic
orbits by means of the critical subsets of an action functional restricted to a submanifold of
the loop space of the unreduced manifold. Finally, as an application, it is shown that if the
symplectic formω has finite integral rank, then the periodic orbits of a Hamiltonian system on
the symplectic manifold(M, ω) admit a variational characterization.

1. Introduction

One of the first domains of research in the theory of dynamical Hamiltonian systems has
been the study of their equilibrium points and periodic orbits. In the presence of symmetries
such study leads to the analysis of relative equilibrium points [14] (see [13] and references
therein for an updated description of the problem). We shall extend some of the ideas
involved in such an analysis to periodic solutions of Hamiltonian systems with symmetries.
In this setting the notion of relative periodic orbit arises naturally and leads to the existence
of a one-to-one correspondence between periodic orbits of reduced Hamiltonian systems,
and certain families of periodic orbits in the unreduced manifold.

Periodic orbits with periodτ ∈ R of a Hamiltonian dynamical system defined by the
Hamiltonian Ht in an exact symplectic manifold(M, ω), ω = −dθ , are characterized
(Hamilton’s principle) as critical points of the action functional

AH (u) = 1

τ

∫
u

θ − 1

τ

∫ τ

0
Ht(u(t)) dt (1.1)

defined on the space of smooth free loops onM:

Lτ (M) = {u ∈ C∞(R, M) | u(t + τ) = u(t), ∀ t ∈ R}. (1.2)

In arbitrary symplectic manifolds(M, ω), the action functional is not well defined and one
only has a mapAH defined on contractible loops and taking values in the quotientR/0,
where0 denotes the period group ofω.

Many symplectic manifolds arise as the Marsden–Weinstein reduction of exact
symplectic manifolds. In this situation it is possible to establish a correspondence between
periodic orbits of the reduced system and certain critical sets of an action functional on the
loop space of the unreduced manifold.

0305-4470/96/030675+13$19.50c© 1996 IOP Publishing Ltd 675



676 A Ibort and C Mart´ınez Ontalba

Variational principles for reduced dynamical systems have been partially studied in [2],
[3] and references therein. In that approach the main idea was to use Lin constraints and
Clebsch variables to obtain a variational description of reduced Lagrangian systems. In
this paper we shall use instead a direct approach showing that the free loop space of the
reduced phase space can be obtained by symplectic reduction of the free loop space of the
original symplectic manifold. Some of these ideas have been originated by Fortune’s proof
of Arnold’s conjecture forCP n [5, 4].

The paper is organized as follows. Section 2 introduces the notion of relative periodic
orbit, which leads to a connection between periodic orbits of reduced and unreduced
Hamiltonian systems. Section 3 studies the variational characterization of periodic orbits
in manifolds obtained as the Marsden–Weinstein reduction of exact symplectic manifolds.
Section 4 is devoted to showing how the previous ideas can be applied to symplectic
toric actions Hamiltonian systems defined on symplectic manifolds(M, ω) with ω of finite
integral rank.

2. Periodic orbits in reduced Hamiltonian systems

Let G be a connected Lie group acting smoothly and symplectically on a symplectic manifold
(M, ω). The action8: G × M → M will be denoted either by(g, m) 7→ 8g(m) or simply
by (g, m) 7→ g · m. Let us assume that the action admits an Ad∗-equivariant momentum
mapJ : M → g∗, whereg∗ denotes the dual of the Lie algebrag of G. This means that
the infinitesimal generatorsξM of the G-action onM defined by the elementsξ ∈ g are
Hamiltonian:

iξM
ω = dJξ ∀ ξ ∈ g (2.1)

with HamiltoniansJξ = 〈ξ, J 〉, and

J (g · m) = Ad∗
g−1 J (m) ∀ g ∈ G ∀ m ∈ M. (2.2)

Let µ ∈ g∗ be a regular value ofJ . Due to equation (2.2) there is an induced smooth
action of the isotropy subgroupGµ of µ on the submanifoldJ−1(µ). If the quotient space
Mµ = J−1(µ)/Gµ is a manifold and the projection mapπµ: J−1(µ) → Mµ is a submersion,
then there is an induced symplectic formωµ on Mµ, defined as the unique symplectic form
satisfying

π∗
µωµ = i∗µω (2.3)

whereiµ: J−1(µ) → M is the inclusion. The symplectic manifold(Mµ, ωµ) is called the
Marsden–Weinstein reduction of(M, ω) relative toµ. If the action ofGµ is proper and

free, thenJ−1(µ)
πµ→ Mµ is a principal fibre bundle with structural groupGµ.

We shall assume in what follows thatGµ is compact, connected, and acts freely on
J−1(µ), so that the conditions above are automatically satisfied.

Consider now a time-dependent HamiltonianH : M × R → R on M such that each
Ht = H(·, t) is G-invariant, and denote byXHt

its associated time-dependent Hamiltonian
vector field, i.e.

i(XHt
)ω = dHt. (2.4)

The integral curves ofXHt
will be the solutions of

d

dt
u(t) = XHt

(u(t)) (2.5)
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and we shall denote byσm the solution with initial valueu(0) = m ∈ M. The restriction
to J−1(µ) of the Hamiltonian vector fieldXHt

is tangent toJ−1(µ) andGµ-invariant. The
projectionT πµ(XHt

) is a well defined Hamiltonian vector field onMµ, called the reduced
Hamiltonian vector field, whose associated Hamiltonianht satisfiesht ◦ πµ = Ht |J−1(µ).

If we denote byσµ,mµ
the solution of

d

dt
u(t) = Xht

(u(t)) (2.6)

with initial value u(0) = mµ ∈ Mµ, then we have

πµ ◦ σm = σµ,πµ(m) ∀ m ∈ J−1(µ). (2.7)

The most interesting solutions of Hamiltonian systems with symmetry are their relative
equilibria. Recall that a pointm ∈ J −1(µ) is called a relative equilibrium ifπµ(m) is an
equilibrium of the reduced Hamiltonian system defined byht . In terms of the flow ofXHt

,
a pointm ∈ J−1(µ) is a relative equilibrium if and only if there exists a curvet 7→ g(t) in
Gµ such that the solution of (2.5) with initial valuem is of the formσm(t) = g(t) · m. If
H is time-independent, then the curve above must be of the formg(t) = exptξ where exp
denotes the exponential map ofGµ.

A useful characterization of relative equilibria is given by the following proposition (see
[1]):

Proposition 1. A point m ∈ J−1(µ) is a relative equilibrium if and only ifm is a critical
point of Ht × J : M → R × g∗ for eacht ∈ R.

Note that, by the Lagrange multipliers theorem, the critical points ofHt × J lying on
J−1(µ) are exactly the critical points of the restrictionHt

∣∣
J−1(µ)

.
After equilibrium points, the most interesting solutions of Hamilton’s equations are

periodic orbits. We shall assume that the HamiltonianH is 1-periodic in time, i.e.
H(m, t + 1) = H(m, t). By periodic orbits we shall mean periodic solutions of Hamilton’s
equations with integer period.

Note that, becauseH is 1-periodic, the relation

σm(t + τ) = σσm(τ)(t) ∀ t ∈ R (2.8)

holds for eachτ ∈ N and a solutionu of (2.5) will be periodic, with integer periodτ , if
and only if u(0) = u(τ).

In the presence of symmetries, the reduced Hamiltonianh of H will also be 1-periodic,
and we have the following natural generalization of the notion of relative equilibrium.

Definition 1. An integral curveu of the Hamiltonian vector fieldXHt
is called a relative

periodic orbit if it projects on a periodic orbit of the reduced Hamiltonian system defined
by ht .

It is easily seen that an integral curveu will be a relative periodic orbit if and only if
J (u(0)) = µ (which impliesJ (u(t)) = µ, ∀ t ∈ R) and there existτ ∈ N, g ∈ Gµ such
that

u(0) = g · u(τ). (2.9)

The notion of relative periodic orbit also arises starting from periodic solutions of
Hamiltonian systems on reduced phase spaces. That is, ifht is a 1-periodic Hamiltonian
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on Mµ, we are looking now for periodic solutions with integer period of (2.6). We shall
denote byPτ

h the set of allτ -periodic solutions, i.e.

Pτ
h = {u ∈ Lτ (Mµ) | u satisfies equation (2.6)}. (2.10)

Now we shall assume that there exists a time-dependent 1-periodic HamiltonianH on
M such that eachHt is a G-invariant extension toM of the pull-backπ∗

µht . ThenXht
is

the reduced Hamiltonian vector field corresponding toXHt
.

If the solutionσµ,mµ
of (2.6) with initial valuemµ belongs toPτ

h and m ∈ π−1
µ (mµ),

then the solutionσm of (2.5) with initial valuem will satisfy πµ(σm(0)) = πµ(σm(τ)) and
hence there will existgm ∈ Gµ such that

m = σm(0) = gm · σm(τ). (2.11)

In other words,σm will be a relative periodic orbit of the unreduced system. The element
gm will be called the holonomy of the curveσm.

For eachg ∈ Gµ, 8g ◦σm = σg·m will also be a relative periodic orbit ofXHt
projecting

on σµ,mµ
, whose holonomy is justggmg−1. In fact, there is a one-to-one correspondence

between periodic orbitsσµ,mµ
of Xht

and families of relative periodic orbits ofXHt
with

initial values at the points of theGµ-orbit π−1
µ (mµ). There is also a conjugation class

Cσ ⊂ Gµ made of the holonomiesggmg−1 associated with a periodic orbitσµ,mµ
.

The variational characterization in section 3 of periodic orbits in reduced systems
requires to establish a correspondence between them and periodic orbits of unreduced
Hamiltonian systems. This can be done if one allows the unreduced Hamiltonian to
vary in the set{Ht + Jξ | ξ ∈ gµ}. (Note that the reduced Hamiltonian vector field of
XHt+Jξ

= XHt
+ ξM is againXht

.)
More precisely, let us consider the equation

d

dt
u(t) = XHt+Jξ

(u(t)) (2.12)

and define

P̂τ
H = {uξ ∈ Lτ (J

−1(µ)) | uξ solves equation (2.12), for someξ ∈ gµ}. (2.13)

The projectionπµ defines a map3(πµ): Lτ (J
−1(µ)) → Lτ (Mµ) by 3(πµ)(u) = πµ ◦ u,

which in turn induces a map̂3(πµ): P̂τ
H → Pτ

h . Our aim is to describe the set̂3(πµ)−1(uµ)

for a givenuµ ∈ Pτ
h .

If σ
ξ
m denotes the solution of (2.12) with initial valuem ∈ M, then it is not difficult to

check that

σ ξ
m(t) = (exptξ ) · σm(t). (2.14)

Moreover, if σ
ξ
m ∈ P̂τ

H , then σm must be a relative periodic orbit with holonomy
gm = exp(τξ). The curves in3̂(πµ)−1(uµ) for a given uµ ∈ Pτ

h are thus determined
by the two conditions

πµ(m) = uµ(0) and exp(τξ) = gm (2.15)

wherem = uξ (0). SinceGµ is assumed to be compact and connected, the exponential map
is surjective and so iŝ3(πµ).

Now, it is easily seen that, for anyg ∈ Gµ,

8g ◦ σ ξ
m = σ

Adg ξ
g·m . (2.16)

The relation exp(Adgξ) = g(expξ)g−1 establishes a bijection between exp−1(ggmg−1) and
exp−1(gm), which leads to a bijection between the subsets of3̂(πµ)−1(uµ) defined by the
initial valuesm andg · m, respectively.

Summing up, we can state:
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Proposition 2. The map3̂(πµ): P̂τ
H → Pτ

h is surjective. The set̂3(πµ)−1(uµ) is given,
for any m ∈ π−1

µ (uµ(0)), by

3̂(πµ)−1(uµ) = {8g ◦ σ ξ
m | exp(τξ) = gm, g ∈ Gµ}. (2.17)

Moreover, there is a bijection̂3(πµ)−1(uµ) → (Gµ · m) × exp−1(gm) given by8g ◦ σ
ξ
m 7→

(g · m, τξ).

Note that ifG is an Abelian group, thenGµ = G and the exponential map exp:G → g
is a local diffeomorphism at every point. For eachgm, the preimage exp−1(gm) is a discrete
set bijective to exp−1(e), wheree is the identity ofG, and3̂(πµ)−1(uµ) is a discrete set of
G-orbits in the loop space.

There is a close relation between periodic orbits of time-dependent Hamiltonians and
periodic points of certain symplectic diffeomorphisms. A symplectic diffeomorphismϕ of
(M, ω) is said to be exact if it can be obtained by integrating a time-dependent 1-periodic
Hamiltonian vector field. More precisely,ϕ will be exact if there exists a smooth 1-periodic
HamiltonianH : R × M → R such that, definingϕt by

d

dt
ϕt = XHt

◦ ϕt ϕ0 = idM (2.18)

one hasϕ = ϕ1. A point m ∈ M is called a periodic point with periodτ ∈ N of ϕ if
ϕτ (m) = m. In particular, the periodic points ofϕ with period equal to 1 are just its fixed
points.

The relationϕt (m) = σm(t) gives a one-to-one correspondence between periodic orbits
of XHt

and periodic points of the exact symplectomorphismϕ1. In fact, sinceH is 1-periodic
in time, we have

ϕt+1 = ϕt ◦ ϕ1 ∀ t ∈ R. (2.19)

In particular, if τ ∈ N thenϕτ = ϕτ
1, andm is a τ -periodic point ofϕ1 if and only if it is

the initial value of aτ -periodic orbit of the Hamiltonian system defined byHt .
In the presence of symmetries, we can consider not only periodic points, but also relative

periodic points. A pointm ∈ M will be a relative periodic point with periodτ ∈ N of a
symplectic diffeomorphismϕ of M if there existsgm ∈ G such thatϕτ (m) = gm · m. If ϕ

is equivariant, i.e.

ϕ ◦ 8g = 8g ◦ ϕ ∀ g ∈ G (2.20)

then its periodic points appear in wholeG-orbits, because

ϕτ (m) = gm · m ⇒ ϕτ (g · m) = g · ϕτ (m) = (ggmg−1) · (g · m). (2.21)

As before, the notion of relative periodic point arises from the study of periodic
points of exact symplectomorphisms on reduced symplectic manifolds. Letϕµ be an exact
symplectomorphism ofMµ induced by the 1-periodic Hamiltonianh on Mµ, and assume
that there exists a 1-periodic HamiltonianH on M such that eachHt is a G-invariant
extension toM of the pull-backπ∗

µht . Then, the exact symplectomorphismϕ induced by
H is equivariant, leavesJ−1(µ) invariant and satisfies

πµ ◦ ϕτ |J−1(µ) = ϕτ
µ ◦ πµ ∀ τ ∈ N. (2.22)

The previous relation gives a one-to-one correspondence betweenτ -periodic points ofϕµ

andGµ-orbits in J−1(µ) of relativeτ -periodic points ofϕ.
Since theτ -periodic points ofϕµ are in one-to-one correspondence withτ -periodic orbits

of Xht
, the variational characterization of the latter in section 3 will serve as a variational

characterization of the former.
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3. Hamilton’s principle and symplectic reduction

In this section we shall develop a variational characterization of periodic orbits of reduced
Hamiltonian systems (or, equivalently, of periodic points of reduced exact symplectic
diffeomorphisms). Such a problem requires understanding the relation between symplectic
reduction and Hamilton’s principle. We shall provide a systematic study of variational
principles with symmetries completing the results obtained in [2].

We shall assume in what follows that the symplectic manifold(M, ω) is exact, i.e.
ω = −dθ , and theG-action leaves the symplectic potentialθ -invariant. The equivariant
momentum map will be defined from

Jξ = i(ξM)θ ∀ ξ ∈ g. (3.1)

Note that, even in this situation, the reduced phase spacesMµ need not be exact
symplectic manifolds.

The periodic orbits of a Hamiltonian system defined byHt on (M, ω) can be identified
with critical points of the action functional (1.1) defined in section 1.

We shall consider the space of smooth free loopsLτ (M) on M defined by (1.2). This
space can be completed and endowed with the structure of a Hilbert manifold. In what
follows we will consider the space of loopsu: R → M, u(t + τ) = u(t) of Sobolev class
1, that will be denoted by3τ(M) [12]. If u denotes a loop onM, the tangent space atu of
3τ(M) can be identified with the Hilbert space of sections ofu∗(T M) of Sobolev class 1.
It is well known [15] that3τ(M) carries a weak symplectic structure� defined as follows:

�u(U, V ) = 1

τ

∫ τ

0
ωu(t)(U(t), V (t)) dt ∀ U, V ∈ Tu3τ (M). (3.2)

If (M, ω) is exact, then(3τ (M), �) is exact, and a symplectic potential is given by

2u(U) = 1

τ

∫ τ

0
θu(t)(U(t)) dt ∀ U ∈ Tu3τ (M). (3.3)

The free loop group ofG, Lτ (G), can be completed to a Hilbert Lie group, that we will
denote by3τ(G), by using again as above loops of Sobolev class 1. The geometry of this
group has been investigated exhaustively (see for instance [6] and references therein). The
action ofG on M induces a smooth symplectic action of3τ(G) on 3τ(M) by means of

8̃: 3τ(G) × 3τ(M) → 3τ(M)

(g̃, u) 7→ g̃ · u
(3.4)

with

g̃ · u: R → M

t 7→ g̃(t) · u(t).
(3.5)

The Lie algebra of the group3τ(G) is 3τ(g), the space of loops of Sobolev class 1
in g. Choosing a left-invariant metric onG, 〈·, ·〉 we can identifyg with g∗, and define an
inner product, denoted with the same symbol, inLτ (g):

〈ξ̃ , ζ̃ 〉 = 1

τ

∫ τ

0
〈ξ̃ (t), ζ̃ (t)〉 dt ∀ ξ̃ , ζ̃ ∈ 3τ(g). (3.6)

The completion of the loop spaceLτ (g) with respect to theL2-norm defined by (3.6), is
the Hilbert spaceL2([0, τ ], g). We shall denote it byL2

τ (g) in what follows. The natural
continuous embedding of the Hilbert space3τ(g) in the Hilbert spaceL2

τ (g) is compact.
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Note thatL2
τ (g

∗) ∼= L2
τ (g)∗, hence we can identify the dual of the Lie algebra of the Hilbert

Lie group3τ(G) with a subspace ofL2
τ (g

∗) by means of a compact embedding.
A simple computation shows that the infinitesimal generator of the3τ(G)-action on

3τ(M) associated tõξ is given by the vector fieldVξ̃ on 3τ(M), which is defined at each
point u ∈ 3τ(M) as

Vξ̃ (u)(t) = ξ̃ (t)M(u(t)). (3.7)

Proposition 3. The symplectic action of3τ(G) on 3τ(M) admits an equivariant smooth
momentum mapJ: 3τ(M) → L2

τ (g
∗) given by

J(u) = J ◦ u ∀ u ∈ 3τ(M). (3.8)

Proof. The smoothness ofJ follows from the previous remarks and equivariance follows
easily from the definition. Next, note that

Jξ̃ (u) = 〈ξ̃ , J(u)〉 = 1

τ

∫ τ

0
〈ξ̃ (t), J (u(t))〉 dt = 1

τ

∫ τ

0
Jξ̃(t)(u(t)) dt. (3.9)

Then, for anyU ∈ Tu3τ (M),

duJξ̃ (U) = 1

τ

∫ τ

0
du(t)Jξ̃(t)(U(t)) dt = 1

τ

∫ τ

0
ωu(t)(Vξ̃ (u)(t), U(t)) dt = �u(Vξ̃ (u), U)

(3.10)

and the conclusion follows. �

From equation (3.8) it follows thatJ−1(µ) = 3τ(J
−1(µ)), whereµ ∈ L2

τ (g
∗) denotes

the constant loop̃µ(t) = µ. The coadjoint orbit in3τ(g
∗) containing the constant loopµ is

the set of loops̃µ(t) = Ad∗
g̃(t) µ. This space is diffeomorphic to the space of loops3τ(Oµ)

on the coadjoint orbitOµ. Note that the isotropy group3τ(G)µ is precisely3τ(Gµ). Then,
the loop group3τ(Gµ) acts onJ−1(µ). Moreover, from equation (3.9), it is clear that ifµ

is a regular value ofJ , then it is also a regular value ofJ.

Proposition 4. Let µ be a regular value ofJ . The space of loops3τ(Mµ) on the reduced
phase space is symplectically diffeomorphic to the symplectic reduction of3τ(M) with
respect to the constant loopµ.

Proof. The map3(πµ): Lτ (J
−1(µ)) → Lτ (Mµ) defined in section 2 extends to a unique

smooth map fromJ−1(µ) = 3τ(J
−1(µ)) to 3τ(Mµ) that will be denoted with the same

symbol. Becauseπµ is a submersion,3(πµ) is a submersion too. Besides, ifu1 and
u2 are loops inJ−1(µ), then 3(πµ)(u1) = 3(πµ)(u2) if and only if u1 differs from u2

in an element onLτ (Gµ). Then,3(πµ) induces a diffeomorphism on the quotient space
J−1(µ)/3τ (Gµ). On the other hand, if�µ denotes the symplectic form in3τ(Mµ), then
it is not difficult to check that3(πµ)∗�µ = 3(iµ)∗�, where

3(iµ): J−1(µ) → 3τ(M)

u 7→ iµ ◦ u

is the map induced by the canonical inclusioniµ. The diffeomorphism induced by3(πµ)

on the quotient is thus a symplectic diffeomorphism. �
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In other words, the previous results show that the functor3τ(·) and symplectic reduction
commute.

Recall thatu is a periodic orbit of the Hamiltonian system defined byHt if and only if
it is a critical point of the smooth functionalAH defined in the introduction extended to the
space3τ(M). Standard regularity arguments show that critical points ofAH are smooth
solutions of Hamilton’s equations defined byHt .

The next proposition gives a characterization of periodic orbits of the reduced
Hamiltonian system.

Proposition 5. The restrictionfµ = AH |J−1(µ) is invariant under the connected component
of the identity,(3τ (Gµ))0, of the group3τ(Gµ). Moreover dfµ is invariant under3τ(Gµ),
and it defines a 1-form on3τ(Mµ) whose zeroes are the periodic orbits of the reduced
Hamiltonian system.

Proof. Note first that, for allu ∈ J−1(µ), U ∈ Tu(J−1(µ)):

dufµ(U) = 1

τ

∫ τ

0
ωu(t)

(
d

dt
u(t) − XHt

(u(t)), U(t)

)
dt

= 1

τ

∫ τ

0
(π∗

µωµ)u(t)

(
d

dt
u(t) − XHt

(u(t)), U(t)

)
dt =

= 1

τ

∫ τ

0
(ωµ)(πµ◦ u)(t)

(
d

dt
(πµ ◦ u)(t) − Xht

((πµ ◦ u)(t)), Tu(t)πµU(t)

)
dt.

(3.11)

The invariance under3τ(Gµ) of dfµ and the statement about the one-form on3τ(Mµ)

follow easily from this expression. In order to prove the invariance offµ under(Lτ (Gµ))0,
it is enough to check that the Lie derivative offµ in the direction ofVξ̃ vanishes for

every ξ̃ ∈ 3τ(gµ), i.e. dufµ(Vξ̃ (u)) = 0, ∀ ξ̃ ∈ 3τ(gµ). But this also follows from
equation (3.11), becauseVξ̃ (u)(t) is tangent to the orbitGµ · u(t) for eacht . �

Note thatfµ is not invariant under3τ(Gµ). In fact, it is readily seen that, for any
g̃ ∈ 3τ(Gµ)

(8̃∗
g̃fµ)(u) = fµ(u) + 1

τ

∫ τ

0
Jζ̃ (t)(u(t)) dt = fµ(u) + 1

τ

∫ τ

0
〈ζ̃ (t), µ〉 dt (3.12)

whereζ̃ ∈ 3τ(gµ) is defined as

ζ̃ (t) = T Lg̃(t)−1

(
d

dt
g̃(t)

)
(3.13)

with L denoting left translation inGµ.

The mapfµ defines a map in the quotient spacê3τ(Mµ) = J−1(µ)/(3τ (Gµ))0, which
is a principal fibre bundle over3τ(Mµ) with structural groupπ1(Gµ) ∼= π0(Lτ (Gµ)), and
hence a multivalued functionalLτ (Mµ) → R with a well defined variation given by the
closed one-form above.

Using the results of section 2, we can give an alternative characterization of periodic
orbits of the reduced system.
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If uµ is a periodic orbit of a reduced Hamiltonian system defined byht , then the
periodic orbits associated to it in proposition 2 will be the critical points of the family of
action functionals

AH,ξ (u) = 1

τ

∫
u

θ − 1

τ

∫ τ

0
Ht(u(t), t) dt − 1

τ

∫ τ

0
Jξ (u(t)) dt ξ ∈ g (3.14)

with ξ ∈ gµ and lying onJ−1(µ).
Let us introduce the averaged momentum mapJ , defined by

J (u) = 1

τ

∫ τ

0
J (u(t)) dt. (3.15)

The constant loops̃g(t) = g form a subgroup of3τ(G) isomorphic toG, andJ : 3τ(M) →
g∗ is precisely the momentum map for the corresponding symplecticG-action on3τ(M).

Now, if u is a critical point ofAH,ξ , with ξ ∈ g, then from

d

dt
u(t) = XHt

(u(t)) + ξM(u(t)) (3.16)

one obtains
d

dt
(J ◦ u)(t) = − ad∗

ξ ((J ◦ u)(t)) (3.17)

and hence

J (u(t)) = Ad∗
exp(−tξ ) J (u(0)) ∀ t ∈ R. (3.18)

The conditionu ∈ J−1(µ) impliesξ ∈ gµ. Then, the periodic orbits associated to a given
periodic orbit in the reduced system are the critical points of all the action functionals (3.14)
lying on J−1(µ) ⊂ J −1(µ), which may be seen as critical points of the restriction

f̂µ = AH |J −1(µ) (3.19)

if one considers the components ofξ ∈ g as Lagrange multipliers.
Thus we have proved:

Proposition 6. The periodic curves in̂Pτ
H are the critical points of

f̂µ = AH |J −1(µ) (3.20)

lying on J−1(µ).

To each periodic orbit of the Hamiltonian system defined byht there will correspond a
critical subset off̂µ of the form given in proposition 2.

Note that, ifG is Abelian, the coadjoint action ong∗ is trivial, and the critical points of
f̂µ all lie on J−1(µ), i.e. on critical loops, the conditionJ (u) = µ implies the pointwise
conditionJ (u(t)) = µ, ∀ t ∈ R.

Now, let u1, u2 ∈ J−1(µ) be any two critical points off̂µ projecting on the same
periodic orbit inMµ. Then

u2(t) = 8g(exptξ )(exp(−tζ ))u1(t) (3.21)

with ξ, ζ ∈ gµ, expτξ = expτζ andg ∈ Gµ.
Hence the points in̂3(πµ)−1(uµ), for a given uµ ∈ Pτ

h , are critical points of
fµ belonging to the sameLτ (Gµ)-orbit in J−1(µ). The connected components of
the orbit in which they fall are determined by the homotopy classes of the curves
t 7→ (exptξ )(exp(−tζ )) in π1(Gµ) ∼= π0(Lτ (Gµ)) (recall that3τ(Gµ) and Lτ (Gµ) are
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homotopically equivalent). Letu1, u2 ∈ J−1(µ) as above, then a short computation shows
that

f̂µ(u1) − f̂µ(u2) = 〈ξ − ζ, µ〉. (3.22)

Proposition 7. For each periodic orbituµ ∈ Pτ
h there is one orbit ofLτ (Gµ) of critical

points offµ on J−1(µ). Moreover if u1, u2 are two such critical points, there will existη̃

in Lτ (gµ) such that their critical values are related by

fµ(u1) − fµ(u2) = 〈η̃, µ〉. (3.23)

Proof. From proposition 5 we know that dfµ is invariant with respect to the action of
3τ(Gµ). Then, the critical points offµ will consist ofLτ (Gµ) orbits onJ−1(µ). Note that
as in (3.21), ifu1, u2 ∈ J−1(µ) are two critical points offµ, then

u2(t) = 8g(expξ(t))(exp(−ζ(t)))u1(t) (3.24)

with ξ(t), ζ(t) ∈ Lτ (gµ), expξ(τ ) = expζ(τ ) andg ∈ Gµ. Definingη̃ = ξ −ζ and because
of (3.12), we obtain the desired formula. �

Note that, by the remarks above, the number of critical points offµ on 3̂τ (Mµ) are
always #π0(Lτ (Gµ)) = #π1(Gµ), the number of connected components of theLτ (Gµ)-
orbit, but the number of critical points of̂fµ could be strictly lower.

Again, whenG is Abelian, the situation is far simpler and the family of critical values
corresponding to a periodic orbit in the reduced system is parametrized by the discrete set
〈exp−1(e), µ〉.

4. Toric actions and Hamilton’s principle

In this section we will apply the previous results to symplectic reduction by an Abelian
compact group. In addition we will show how any symplectic manifold(M, ω) with ω

having finite integral rank can be realized as the Marsden–Weinstein reduction of an exact
symplectic manifold with respect to a torus action, so that Hamilton’s principle can be
applied to reduced Hamiltonian systems. The finite integral rank condition is not very
restrictive and it is satisfied, in particular, if the manifoldM is of finite type.

Let (M, ω) be a symplectic manifold withω of finite integral rank, i.e. such that
[ω] ∈ H 2(M, R) lies in H 2(M, Z)⊗R. Then, there exist integral closed 2-formsc1, . . . , cN

and non-zero real numbersa1, . . . , aN such thatω = ∑N
i=1 aici .

For eachi = 1, . . . , N there is a principalS1-bundle Pi

πi→ M with connectionAi

whose curvature satisfies dAi = π∗
i ci . The fibre productP

π→ M of the Pi is a principal
TN -bundle.

In what follows, we shall identify the Lie algebratN of TN with RN . If pi denotes the
projectionP → Pi , i = 1, . . . , N , thenA = (p∗

1A1, . . . , p
∗
NAN) defines a connection inP

with curvature dA = (π∗c1, . . . , π
∗cN).

Let us consider now the closed 2-formωP = π∗ω in P . From

ωP = π∗
( N∑

i=1

aici

)
=

N∑
i=1

aiπ
∗ci =

N∑
i=1

aip
∗
i dAi (4.1)

one obtainsωP = −dθP with θP = −∑N
i=1 aip

∗
i Ai = −〈A, a〉, wherea = (a1, . . . , aN) ∈

(tN)∗ ∼= RN .
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The manifold(P, ωP ) is a presymplectic manifold with characteristic bundle kerωP =
V (P ), the vertical subbundle ofT P , which is a trivial bundle as well as its dual

kerωP
∼= P × RN and (kerωP )∗ ∼= P × RN. (4.2)

The connectionA allows to define an exact symplectic form� in a neighbourhoodU of
the zero sectionP × {0} in P × RN such that the map

ι: P → U
p 7→ (p, 0)

(4.3)

is a coisotropic embedding (see [7, 8]).
Let pr1: P × RN → P and pr2: P × RN → RN be the natural projections and consider

the following 1-form inP × RN :

2 = pr∗1θP − 〈pr∗1A, pr2〉 = −〈pr∗1A, pr2 + a〉 (4.4)

i.e. for (p, µ) ∈ P × RN we have

2(p,µ)(U) = −〈Ap(U1), µ + a〉 (4.5)

for eachU = (U1, U2) in T(p,µ)(P × RN) ∼= TpP × TµRN ∼= TpP × RN .
The 2-form� = −d2 is non-degenerate at the points ofP × {0} and hence in some

neighbourhoodU of P × {0}. This is easily seen from the explicit expression for�:

�(p,µ)(U, V ) = (π∗ω)p(U1, V1) + 〈(dA)p(U1, V1), µ〉 + 〈Ap(V1), U2〉 − 〈Ap(U1), V2〉
(4.6)

for U = (U1, U2), V = (V1, V2) ∈ T(p,µ)(P ×RN). If M is compact, then the neighbourhood
U can be chosen of the formU = P × V, for some neighbourhoodV of 0 in RN .

The diagonal action ofTN on P × RN

g · (p, µ) = (p · g−1, Ad∗
g−1 µ) = (p · g−1, µ) ∀ g ∈ TN ∀ (p, µ) ∈ P × RN (4.7)

leaves the symplectic potential2 invariant. Moreover, the neighbourhoodU above can
be chosenTN -invariant, so that we have a symplectic action ofTN on (U , �) with an
equivariant momentum mapJ defined by the Hamiltonians

Jξ = i(ξU )2 ξ ∈ RN. (4.8)

The infinitesimal generators of the action onU are given by

ξU (p, µ) = (ξP (p), − ad∗
ξ(µ)) = (ξP (p), 0) (4.9)

and the corresponding Hamiltonians by

Jξ (p, µ) = −〈ξ, µ + a〉. (4.10)

The equivariant momentum map for the symplectic action ofTN on U is thus
J = −(pr2 + a) and the Marsden–Weinstein reduction of(U , �) with respect to−a ∈ RN

is isomorphic to(M, ω).
Now, let h : M × R → R be a Hamiltonian onM, 1-periodic in time, and consider any

H : U × R → R, 1-periodic in time and such that eachHt is an invariant extension toU
of the functionP × {0} → R defined by(p, 0) 7→ ht (π(t)). For example, we can take

H : U × R → R

((p, µ), t) 7→ h(π(p), t).
(4.11)
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Note that, with this particular choice ofH , the associated Hamiltonian vector fieldXHt

satisfies

XHt
(p, 0) = (Xt (p), 0) (4.12)

whereXt is the horizontal lifting ofXht
to P using the connectionA.

The relative periodic orbits introduced in section 2 are then curves(σp, 0), with σp being
the horizontal lifting of a periodic orbit in(M, ω), and the holonomy defined in (2.11) is
precisely the holonomy of the connectionA along the pathσp.

The variational characterization of periodic orbits in the reduced Hamiltonian system will
be given as follows. Let us consider the action functionalAH on 3τ(U) ⊂ 3τ(P × RN) ∼=
3τ(P )⊗̂3τ(RN):

AH (u) = 1

τ

∫
u

2 − 1

τ

∫ τ

0
Ht(u(t)) dt (4.13)

and the averaged momentum map

J : 3τ(U) → RN

u = (u1, u2) 7→ −a − 1

τ

∫ τ

0
u2(t) dt.

(4.14)

By the results of the previous sections, particularized to the case of a free torus action,
to each periodic orbit with periodτ ∈ N of the Hamiltonian system defined byh on (M, ω)

there corresponds a lattice, bijective toZN , of critical TN -orbits of the restriction ofAH to
the submanifoldJ −1(−a) = {(u1, u2) ∈ Lτ (U) | ∫ τ

0 u2(t) dt = 0}.
Moreover, the corresponding set of critical values is parametrized by〈(2πZ)N , a〉.

Since a comes from the decompositionω = ∑N
i=1 aici , its componentsai can be taken

independent overZ, and hence the set of critical values corresponding to a periodic orbit
is also bijective toZN , i.e. each criticalTN -orbit contributes with a critical value.

Indeed, the critical points of̂f = AH |J −1(−a) all lie on Lτ (P × {0}) and since the map

exp−1(e) → π1(TN)

ξ 7→ [exptξ ]

is surjective, there are critical points of̂f on each connected component of aLτ (TN)-orbit
in 3τ(P × {0}). In other words, each periodic orbit of the reduced system gives rise to a
critical π1(TN)-orbit in the space3̂τ (M) introduced in section 3.

It is relevant to point out here that this method is close in spirit to the universal lifting
of Arnold’s conjecture toR2N discussed in [10, 11] and which is based upon the universal
symplectic unreduction of symplectic manifolds [9].

Non-Abelian situations, like Hamiltonian systems on coadjoint orbits of compact Lie
groups obtained by symplectic reduction of cotangent groups, and their applications, will
be discussed elsewhere.
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